LETTER KEY

w = uniform load per length in inches
$\ell=$ length of member between supporting members in inches
$L=$ length of member between supporting members in feet
$b=$ width of rectangular member (actual not nominal) in inches
$d=$ depth of rectangular member (actual not nominal) in inches
$S=$ section modulus of lumber
M = bending moment in inch-pounds
$E=$ modulus of elasticity of lumber
$\mathrm{I}=$ moment of inertia in (inches) ${ }^{4}$

LETTER KEY

$F_{b}=$ allowable unit stress for extreme fiber in psi
$F_{v}=$ allowable unit horizontal shear in psi
$\mathrm{R}_{\mathrm{V}}=$ vertical reaction in pounds
PSF = pounds per square foot
PLF = pounds per lineal foot
psi = pounds per square inch
TL = total load
LL = live load
$D=$ actual deflection

FORMULAS

Load on Joist
Maximum Bending Moment
Section Modulus
Maximum Fiber Stress
Moment of Inertia

- PSF x Spacing/12" = PLF
- $M=T L \times L / 8$
- $S=b \times d^{2} / 6$
- $F_{b \max }=M / S$
- $\quad I=b \times d^{3} / 12$

FORMULAS

Actual Deflection
Allowable Deflection
Horizontal Shear
$-\mathrm{D}=\frac{5 \times \mathrm{TL} \times \mathrm{L}^{3}}{384 \times \mathrm{ExI}}$

- e/360
- $\quad R_{V}=P L F \times L / 2$

$$
F_{v}=\frac{3 \times R_{v}}{2 \times b \times d}
$$

CALCULATIONS

1. Case Scenario: Use $3^{\prime \prime} \times 10^{\prime \prime}$ (full) \#3 SPF as a floor joist 24" o.c.
2. Design Data: Deflection $=\ell / 360$; Live Load $=40$ psf; Dead Load = 10 psf; Joist Span (out to out) = 12'

Design Values from Table 4a of the NDS.
$F_{b}=500 F_{t}=250 F_{v}=135 F_{C \perp}=425 F_{c}=650 \mathrm{E}=1,200,000$

ADJUSTMENT FACTORS

NDS Table 4a
Repetitive Member Factor, C_{r}
Wet Service Factor, C_{M}
Flat Use Factor, C_{fu}
Size Factor, C_{F}

ADJUSTMENT FACTORS

NDS Table 4a
Repetitive Member Factor, C_{r}
Wet Service Factor, C_{M}
Flat Use Factor, C_{fu}
Size Factor, C_{F}

ADJUSTMENT

FACTORS

Repetitive Member Factor, C_{r}
Bending design values, F_{b}, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_{r}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

ADJUSTMENT

FACTORS

Repetitive Member Factor, C_{r}
Bending design values, F_{b}, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_{r}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

ADJUSTMENT FACTORS

Size Factor, C_{f}
Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

ADJUSTMENT FACTORS

Size Factors, $\mathbf{C}_{\mathbf{F}}$

Grades	Width (depth)	F_{b}		F_{t}	$\mathrm{F}_{\text {c }}$
		Thickness (breadth)			
		2" \& 3"	$4 "$		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", $3^{\prime \prime}$, \& 4"	1.5	1.5	1.5	1.15
	5 "	1.4	1.4	1.4	1.1
	$6 "$	1.3	1.3	1.3	1.1
	8"	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12 "	1.0	1.1	1.0	1.0
	14" \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5 " \& 6$	1.0	1.0	1.0	1.0
	$8{ }^{\prime \prime}$ \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	2", 3", \& 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" \& 3"	0.4	-	0.4	0.6

CALCULATIONS

1. Case Scenario: Use $3^{\prime \prime} \times 10^{\prime \prime}$ (full) \#3 SPF as a floor joist 24" o.c.
2. Design Data: Deflection $=\ell / 360$; Live Load $=40 \mathrm{psf}$; Dead Load = 10 psf. Joist Span (out to out) = 12';

Design Values from Table 4a of the NDS.
$F_{b}=500 F_{t}=250 F_{t}=135 F_{c \perp}=425 F_{c}=650 \mathrm{E}=1,200,000$
Adjustment factors: $\mathrm{F}_{\mathrm{b}} \times \mathrm{C}_{\mathrm{r}} \times \mathrm{C}_{\mathrm{f}}$
$F_{b}=500 \times 1.15 \times 1.1=632.5 \mathrm{psi}$

CALCULATIONS

3. Load on Joist

50 psf $\times 24 " / 12^{\prime \prime}=100$ plf -100 plf $\times 12^{\prime}=1,200 \mathrm{lbs}$ TL
4. Maximum Bending Moment
$1,200 \mathrm{lbs} \times\left(12^{\prime} \times 12\right.$ " $) / 8=21,500$ in lbs.
5. Section Modulus of a 3×10 (full)
$3^{\prime \prime} \times 10^{2 "} / 6=50 \mathrm{in}^{3}$

CALCULATIONS

6. Maximum Fiber Stress

21,600 in lbs. $/ 50 \mathrm{in}^{3}=432 \mathrm{psi}$
432 psi < 632 psi
Maximum Fiber Stress is OK

CALCULATIONS

7. Check the Deflection for Total Load
A. Determine the moment of inertia for a 3×10

$$
3 \times 10^{3} / 12=250 \mathrm{in}^{4}
$$

CALCULATIONS

7. Calculate the Actual (B.) and Allowable (C.) Deflection
B.

$$
\frac{5 \times 1,200 \times 144^{3}}{384 \times 1,200,000 \times 250}=.155^{\prime \prime}
$$

C.

$$
\frac{e}{360}=\frac{144}{360}=.40 "
$$

CALCULATIONS

7. Calculate the Actual (B.) and Allowable (C.) Deflection
B. $\frac{5 \times 1,200 \times 144^{3}}{384 \times 1,200,000 \times 250}=.155^{\prime \prime}$
C.

$$
\frac{\ell}{360}=\frac{144}{360}=.40^{\prime \prime}
$$

Deflection is OK

CALCULATIONS

8. Calculate Allowable Horizontal Shear

100 PLF $\times \frac{12}{2}=600 \mathrm{lbs}$.

CALCULATIONS

8. Calculate Allowable Horizontal Shear

$$
\begin{aligned}
& 100 \text { PLF } \times \frac{12}{2}=60 \\
& \frac{3 \times 600}{2 \times 3 \times 10}=30 \mathrm{psi}
\end{aligned}
$$

$$
R=600 \mathrm{lbs} . \quad R=600 \mathrm{lbs} .
$$

$$
30 \text { psi < } 135 \text { psi }
$$

Shear is OK

CALCULATIONS

9. Required Bearing Area 600 lbs. $=1.41$ sq. in. req. brg. area 425 psi
10. Minimum Required Bearing Length

$$
\frac{1.41 \text { sq. in. }}{3^{\prime \prime}}=.47^{\prime \prime}
$$

SHOULDER STUD CALCS.

26' wide roof w/2' overhang; 40 psf., LL 10 psf., DL 50 PSF TL Installed 2-ply $2 \times ? ? \times 7$ ' header w/1 shoulder stud on each end SOLVE FOR R $(26 / 2+2) \times(40+10) \times 7 / 2=2,625 \mathrm{lbs}$.

$\mathrm{R}=2,625 \mathrm{lbs}$.
$\mathrm{R}=2,625 \mathrm{lbs}$.

SHOULDER STUD CALCS.

$\mathrm{R}=2,625 \mathrm{lbs}$.
$\mathrm{R}=2,625 \mathrm{lbs}$.
F_{c} for 2×6 SPF South Stud grade $=625 \mathrm{psi}$

Calculate Req. Brg. Length

$$
\frac{R}{F_{c} \times b}=\frac{2,625}{625 \times 3}=1.4^{\prime \prime}
$$

SHOULDER STUD CALCS.

$(26 / 2+2) \times(40+10) \times 7 / 2=2,625 \mathrm{lbs}$.
$15^{\prime} \times 50 \mathrm{psf}=750$ plf
750 plf $\times 7$ ' $=5,250 \mathrm{lbs}$.
$5,250 \mathrm{lbs} / 2=2,625 \mathrm{lbs}$.

